
For Problems 1-3

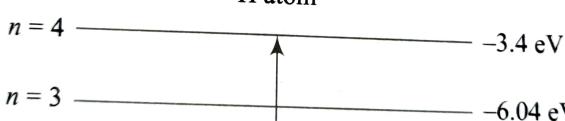
In a mixture of H-He⁺ gas (He⁺ is singly ionized He atom), H atoms and He⁺ ions are excited to their respective first excited states. Subsequently, H atoms transfer their total excitation energy to He⁺ ions (by collisions). Assume that the Bohr model of atom is exactly valid. (IIT JEE, 2008)

- 1. The quantum number n of the state finally populated in He⁺ ions is
 - **a.** 2 **b.** 3 **c.** 4 **d.** 5
- 2. The wavelength of light emitted in the visible region by He⁺ ions after collisions with H atoms is

 a. 6.5×10^{-7} m

 b. 5.6×10^{-7} m

 c. 4.8×10^{-7} m


 d. 4.0×10^{-7} m
- 3. The ratio of the kinetic energy of the n = 2 electron for the H atom to that of He⁺ ion is

a.
$$\frac{1}{4}$$
 b. $\frac{1}{2}$ **c.** 1 **d.** 2

1. c.
$$n = 2$$

$$n = 1$$

$$\Delta E = 10.2 \text{ eV}$$
H atom

-3.4 eV

-13.6 eV

$$n = 3$$
 — -6.04 eV
 $n = 2$ — -13.6 eV
 $n = 1$ — -54.4 eV

He⁺

Z=2

Energy given by H atom in transition from n = 2 to n = 1 is equal to energy taken by He⁺ atom in transition from n = 2 to n = 4.

2. c. Visible light lies in the range, $\lambda_1 = 4000 \text{ Å}$ to $\lambda_2 = 7000 \text{ Å}$. Energy of photons corresponding to these wavelengths (in eV) would be:

$$E_1 = \frac{12375}{4000} = 3.09 \text{ eV}, \text{ and}$$

 $E_2 = \frac{900}{11R} = 1.77 \text{ eV}$

From energy level diagram of He^+ atom, we can see that in transition from n = 4 to n = 3, energy of photon released will lie between E_1 and E_2 .

$$\Delta E_{43} = -3.4 - (-6.04)$$

= 2.64 eV

Wavelength of photon corresponding to this energy,

$$\lambda = \frac{12375}{264} \text{ Å} = 4687.5 \text{ Å}$$
$$= 4.68 \times 10^{-7} \text{ m}$$

3. a. Kinetic energy, $K \propto Z^2$

$$\frac{K_{\rm H}}{K_{\rm He^+}} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$